Part Number Hot Search : 
HER201 GM4275 2SK4012 304S32 NB4N111K RFP150N ABX0027T A2910
Product Description
Full Text Search
 

To Download IRFB4212 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFB4212pbf description this digital audio mosfet is specifically designed for class-d audio amplifier applications. this mosfet utilizes the latest processing techniques to achieve low on-resistance per silicon area. furthermore, gate charge, body-diode reverse recovery and internal gate resistance are optimized to improve key class-d audio amplifier performance factors such as efficiency, thd and emi. additional features of this mosfet are 175c operating junction temperature and repetitive avalanche capability. these features combine to make this mosfet a highly efficient, robust and reliable device for classd audio amplifier applications. s d g to-220ab features ? key parameters optimized for class-d audio amplifier applications ? low r dson for improved efficiency ? low q g and q sw for better thd and improved efficiency ? low q rr for better thd and lower emi ? 175c operating junction temperature for ruggedness ? can deliver up to 150w per channel into  4 ?  load in half-bridge topology v ds 100 v r ds(on) typ. @ 10v 72.5 m  q g typ. 15 nc q sw typ. 8.3 nc r g(int) typ. 2.2 ? t j max 175 c key parameters absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current  p d @t c = 25c power dissipation  w p d @t c = 100c power dissipation  linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case  ??? 2.5 r cs case-to-sink, flat, greased surface 0.50 ??? c/w r ja junction-to-ambient  ??? 62 max. 13 57 20 100 18 60 30 0.4 10lb  in (1.1n  m) -55 to + 175 300 2014-8-9 1 www.kersemi.com
s d g   repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 0.32mh, r g = 25 ? , i as = 13a.  pulse width 400s; duty cycle 2%.   r is measured at   
   limited by tjmax. see figs. 14, 15, 17a, 17b for repetitive avalanche information electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 100 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 0.09 ??? v/c r ds(on) static drain-to-source on-resistance ??? 58 72.5 m ? v gs(th) gate threshold voltage 3.0 ??? 5.0 v ? v gs(th) / ? t j gate threshold voltage coefficient ??? -13 ??? mv/c i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 g fs forward transconductance 11 ??? ??? s q g total gate charge ??? 15 23 q gs1 pre-vth gate-to-source charge ??? 3.3 ??? q gs2 post-vth gate-to-source charge ??? 1.4 ??? nc q gd gate-to-drain charge ??? 6.9 ??? q godr gate charge overdrive ??? 3.4 ??? see fig. 6 and 19 q sw switch charge (q gs2 + q gd ) ??? 8.3 ??? r g(int) internal gate resistance ??? 2.2 ??? ? t d(on) turn-on delay time ??? 7.7 ??? t r rise time ??? 28 ??? t d(off) turn-off delay time ??? 14 ??? ns t f fall time ??? 3.9 ??? c iss input capacitance ??? 550 ??? c oss output capacitance ??? 66 ??? pf c rss reverse transfer capacitance ??? 35 ??? c oss effective output capacitance ??? 350 ??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current  a e ar repetitive avalanche energy  mj diode characteristics parameter min. typ. max. units i s @ t c = 25c continuous source current ??? ??? 18 (body diode) a i sm pulsed source current ??? ??? 57 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 41 62 ns q rr reverse recovery charge ??? 69 100 nc mosfet symbol r g = 2.5 ? v ds = 50v, i d = 13a conditions and center of die contact v dd = 50v, v gs = 10v  v ds = 80v v ds = 50v v ds = v gs , i d = 250a v ds = 100v, v gs = 0v v gs = 0v, v ds = 0v to 80v v ds = 100v, v gs = 0v, t j = 125c v gs = 20v v gs = -20v v gs = 10v i d = 13a v gs = 0v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 13a  t j = 25c, i f = 13a di/dt = 100a/s  t j = 25c, i s = 13a, v gs = 0v  showing the integral reverse p-n junction diode. i d = 13a typ. max. ? = 1.0mhz, see fig.5 ??? 25 see fig. 14, 15, 17a, 17b IRFB4212pbf 2014-8-9 2 www.kersemi.com
fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 6. typical gate charge vs.gate-to-source voltage fig 5. typical capacitance vs.drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 6.0v vgs top 15v 12v 10v 9.0v 8.0v 7.0v bottom 6.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 6.0v vgs top 15v 12v 10v 9.0v 8.0v 7.0v bottom 6.0v 2 4 6 8 10 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 50v 60s pulse width t j = 25c t j = 175c 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 5 10 15 20 25 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v vds= 50v vds= 20v i d = 13a -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 13a v gs = 10v IRFB4212pbf 2014-8-9 3 www.kersemi.com
fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 7. typical source-drain diode forward voltage fig 8. maximum safe operating area 25 50 75 100 125 150 175 t j , junction temperature (c) 0 4 8 12 16 20 i d , d r a i n c u r r e n t ( a ) 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.0489 0.00000 0.3856 0.000062 1.3513 0.001117 0.7140 0.013125 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc 0.0 0.5 1.0 1.5 v sd , source-to-drain voltage (v) 0.1 1.0 10.0 100.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v fig 10. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 2.0 3.0 4.0 5.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a IRFB4212pbf 2014-8-9 4 www.kersemi.com
fig 13. maximum avalanche energy vs. drain current fig 12. on-resistance vs. gate voltage fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 17a, 17b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 3.2a 5.7a bottom 13a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 6 8 10 12 14 16 v gs , gate-to-source voltage (v) 0.0 0.1 0.2 0.3 0.4 0.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) t j = 25c t j = 125c i d = 13a 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 5 10 15 20 25 30 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 13a IRFB4212pbf 2014-8-9 5 www.kersemi.com
fig 18a. switching time test circuit fig 18b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 17b. unclamped inductive waveforms fig 17a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 19a. gate charge test circuit fig 19b gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 16. 
 



   for n-channel hexfet   power mosfets 1k vcc dut 0 l 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"   
     IRFB4212pbf 2014-8-9 6 www.kersemi.com


  
         

  
 lot code 1789 example: t his is an irf1010 note: "p" in assembly line position i ndi cates "l ead - f r ee" in the assembly line "c" as s embled on ww 19, 2000 international part number rectifier lot code as s e mb l y logo year 0 = 2000 dat e code we e k 19 line c IRFB4212pbf 2014-8-9 7 www.kersemi.com


▲Up To Search▲   

 
Price & Availability of IRFB4212

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X